Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 129(7): 073201, 2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36018694

RESUMO

Strong-field ionization of nanoscale clusters provides excellent opportunities to study the complex correlated electronic and nuclear dynamics of near-solid density plasmas. Yet, monitoring ultrafast, nanoscopic dynamics in real-time is challenging, which often complicates a direct comparison between theory and experiment. Here, near-infrared laser-induced plasma dynamics in ∼600 nm diameter helium droplets are studied by femtosecond time-resolved x-ray coherent diffractive imaging. An anisotropic, ∼20 nm wide surface region, defined as the range where the density lies between 10% and 90% of the core value, is established within ∼100 fs, in qualitative agreement with theoretical predictions. At longer timescales, however, the width of this region remains largely constant while the radius of the dense plasma core shrinks at average rates of ≈71 nm/ps along and ≈33 nm/ps perpendicular to the laser polarization. These dynamics are not captured by previous plasma expansion models. The observations are phenomenologically described within a numerical simulation; details of the underlying physics, however, remain to be explored.

2.
Phys Rev Lett ; 124(21): 215301, 2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32530661

RESUMO

The angular momentum of rotating superfluid droplets originates from quantized vortices and capillary waves, the interplay between which remains to be uncovered. Here, the rotation of isolated submicrometer superfluid ^{4}He droplets is studied by ultrafast x-ray diffraction using a free electron laser. The diffraction patterns provide simultaneous access to the morphology of the droplets and the vortex arrays they host. In capsule-shaped droplets, vortices form a distorted triangular lattice, whereas they arrange along elliptical contours in ellipsoidal droplets. The combined action of vortices and capillary waves results in droplet shapes close to those of classical droplets rotating with the same angular velocity. The findings are corroborated by density functional theory calculations describing the velocity fields and shape deformations of a rotating superfluid cylinder.

3.
J Chem Phys ; 152(23): 234306, 2020 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-32571041

RESUMO

The phenomenon of liquid jets disintegrating into droplets has attracted the attention of researchers for more than 200 years. An overwhelming fraction of these studies considered classical viscous liquid jets issuing into ambient atmospheric gases, such as air. Here, we present an optical shadowgraphy study of the disintegration of a cryogenic liquid helium jet produced with a 5 µm diameter nozzle into vacuum. The physical properties of liquid helium, such as its density, surface tension, and viscosity, change dramatically as the jet flows through the nozzle and evaporatively cools in vacuum, eventually reaching the superfluid state. In this study, we demonstrate that, at different stagnation pressures and temperatures, droplet formation may involve spraying, capillary breakup, jet branching, and/or flashing and cavitation. The average droplet sizes produced in this work range from 3.4 × 1012 to 6.5 × 1012 helium atoms or 6.7-8.3 µm in diameter. This paper also reports on the distributions of sizes and shapes of the resulting droplets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...